Fast Evaluation of Multiquadric RBF Sums by a Cartesian Treecode
نویسندگان
چکیده
A treecode is presented for evaluating sums defined in terms of the multiquadric radial basis function (RBF), φ(x) = (|x|2 + c2)1/2, where x ∈ R3 and c ≥ 0. Given a set of N nodes, evaluating an RBF sum directly requires CPU time that scales like O(N2). For a given level of accuracy, the treecode reduces the CPU time to O(N logN) using a far-field expansion of φ(x). We consider two options for the far-field expansion: (1) a Laurent series previously used in applications of the Fast Multipole Method to multiquadric RBFs, and (2) a certain Taylor series previously used in treecode particle simulations, but not yet in the context of multiquadric RBFs. It is known that the Laurent series converges when the RBF parameter c lies in an interval 0 ≤ c ≤ c̄, where c̄ is proportional to the minimum node spacing, but here we show that the Taylor series converges uniformly for c ≥ 0. We implement the treecode in Cartesian coordinates and use a recurrence relation to compute the Taylor coefficients. Numerical results exhibit the treecode error, CPU time, and memory usage in two test cases, random nodes in a cube and on the surface of a sphere. The treecode approach presented here is applicable to generalized multiquadrics in any dimension.
منابع مشابه
A Fast Treecode for Multiquadric Interpolation with Varying Shape Parameters
A treecode algorithm is presented for the fast evaluation of multiquadric radial basis function (RBF) approximations. The method is a dual approach to one presented by Krasny and Wang, which applies far-field expansions to clusters of RBF centers (source points). The new approach clusters evaluation points instead and is therefore easily able to cope with basis functions that have different mul...
متن کاملFast Multilevel Evaluation of Smooth Radial Basis Function Expansions
Abstract. Radial basis functions (RBFs) are a powerful tool for interpolating/approximating multidimensional scattered data. Notwithstanding, RBFs pose computational challenges, such as the efficient evaluation of an n-center RBF expansion at m points. A direct summation requires O(nm) operations. We present a new multilevel method whose cost is only O((n + m) ln(1/δ)), where δ is the desired a...
متن کاملAn Embedded Cartesian Grid Euler Solver with Radial Basis Function for Boundary Condition Implementation
A Cartesian grid approach for the solution of the Euler equations within the framework of a patched, embedded Cartesian field mesh is described. As Cartesian grids are not necessarily body-aligned, an accurate representation for the surface boundary is important. In this paper a gridless boundary treatment using a cloud of nodes in the vicinity of the body combined with the multiquadric radial ...
متن کاملRBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011